14 research outputs found

    Stability issues of entropy-stable and/or split-form high-order schemes -- Analysis of local linear stability

    Get PDF
    The focus of the present research is on the analysis of local linear stability of high-order (including split-form) summation-by-parts methods, with e.g. two-point entropy-conserving fluxes, approximating non-linear conservation laws. Our main finding is that local linear stability is not guaranteed even when the scheme is non-linearly stable and that this has grave implications for simulation results. We show that entropy-conserving two-point fluxes are inherently locally linearly unstable, as they can be dissipative or anti-dissipative. Unfortunately, these fluxes are at the core of many commonly used high-order entropy-stable extensions, including split-form summation-by-parts discontinuous Galerkin spectral element methods (or spectral collocation methods). For the non-linear Burgers equation, we demonstrate numerically that such schemes cause exponential growth of errors. Furthermore, we demonstrate a similar abnormal behaviour for the compressible Euler equations. Finally, we demonstrate numerically that other commonly used split-forms, such as the Kennedy and Gruber splitting, are also locally linearly unstable

    An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive MHD Equations. Part II: Subcell Finite Volume Shock Capturing

    Get PDF
    The second paper of this series presents two robust entropy stable shock-capturing methods for discontinuous Galerkin spectral element(DGSEM)discretizations of the compressible magneto-hydrodynamics (MHD) equations. Specifically, we use the resistive GLM-MHD equations, which include a divergence cleaning mechanism that is based on a generalized Lagrange multiplier (GLM). For the continuous entropy analysis to hold, and due to the divergence-free constraint on the magnetic field, the GLM-MHD system requires the use of non-conservative terms, which need special treatment. Hennemann et al. ["A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations". JCP, 2020] recently presented an entropy stable shock-capturing strategy for DGSEM discretizations of the Euler equations that blends the DGSEM scheme with a subcell first-order finite volume (FV) method. Our first contribution is the extension of the method of Hennemann et al. to systems with non-conservative terms, such as the GLM-MHD equations. In our approach, the advective and non-conservative terms of the equations are discretized with a hybrid FV/DGSEM scheme, whereas the visco-resistive terms are discretized only with the high-order DGSEM method. We prove that the extended method is entropy stable on three-dimensional unstructured curvilinear meshes. Our second contribution is the derivation and analysis of a second entropy stable shock-capturing method that provides enhanced resolution by using a subcell reconstruction procedure that is carefully built to ensure entropy stability. We provide a numerical verification of the properties of the hybrid FV/DGSEM schemes on curvilinear meshes and show their robustness and accuracy with common benchmark cases, such as the Orszag-Tang vortex and the GEM (Geospace Environmental Modeling) reconnection challenge. Finally, we simulate a space physics application: the interaction of Jupiter's magnetic field with the plasma torus generated by the moon Io

    An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and Numerical Verification

    Get PDF
    The first paper of this series presents a discretely entropy stable discontinuous Galerkin (DG) method for the resistive magnetohydrodynamics (MHD) equations on three-dimensional curvilinear unstructured hexahedral meshes. Compared to other fluid dynamics systems such as the shallow water equations or the compressible Navier-Stokes equations, the resistive MHD equations need special considerations because of the divergence-free constraint on the magnetic field. For instance, it is well known that for the symmetrization of the ideal MHD system as well as the continuous entropy analysis a non-conservative term proportional to the divergence of the magnetic field, typically referred to as the Powell term, must be included. As a consequence, the mimicry of the continuous entropy analysis in the discrete sense demands a suitable DG approximation of the non-conservative terms in addition to the ideal MHD terms. This paper focuses on the resistive MHD equations: Our first contribution is a proof that the resistive terms are symmetric and positive-definite when formulated in entropy space as gradients of the entropy variables, which enables us to show that the entropy inequality holds for the resistive MHD equations. This continuous analysis is the key for our DG discretization and guides the path for the construction of an approximation that discretely mimics the entropy inequality, typically termed entropy stability. Our second contribution is a detailed derivation and analysis of the discretization on three-dimensional curvilinear meshes. The discrete analysis relies on the summation-by-parts property, which is satisfied by the DG spectral element method (DGSEM) with Legendre-Gauss-Lobatto (LGL) nodes. Although the divergence- free constraint is included in the non-conservative terms, the resulting method has no particular treatment of the magnetic field divergence errors, which might pollute the solution quality. Our final contribution is the extension of the standard resistive MHD equations and our DG approximation with a divergence cleaning mechanism that is based on a generalized Lagrange multiplier (GLM). As a conclusion to the first part of this series, we provide detailed numerical validations of our DGSEM method that underline our theoretical derivations. In addition, we show a numerical example where the entropy stable DGSEM demonstrates increased robustness compared to the standard DGSEM

    A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations

    Get PDF
    The main result in this paper is a provably entropy stable shock capturing approach for the high order entropy stable Discontinuous Galerkin Spectral Element Method (DGSEM) based on a hybrid blending with a subcell low order variant. Since it is possible to rewrite a high order summation-by-parts (SBP) operator into an equivalent conservative finite volume form, we were able to design a low order scheme directly with the Legendre-Gauss-Lobatto (LGL) nodes that is compatible to the discrete entropy analysis used for the proof of the entropy stable DGSEM. Furthermore, we present a hybrid low order/high order discretisation where it is possible to seamlessly blend between the two approaches, while still being provably entropy stable. With tensor products and careful design of the low order scheme on curved elements, we are able to extend the approach to three spatial dimensions on unstructured curvilinear hexahedral meshes. We validate our theoretical findings and demonstrate convergence order for smooth problems, conservation of the primary quantities and discrete entropy stability for an arbitrary blending on curvilinear grids. In practical simulations, we connect the blending factor to a local troubled element indicator that provides the control of the amount of low order dissipation injected into the high order scheme. We modified an existing shock indicator, which is based on the modal polynomial representation, to our provably stable hybrid scheme. The aim is to reduce the impact of the parameters as good as possible. We describe our indicator in detail and demonstrate its robustness in combination with the hybrid scheme, as it is possible to compute all the different test cases without changing the indicator. The test cases include e.g. the double Mach reflection setup, forward and backward facing steps with shock Mach numbers up to 100. The proposed approach is relatively straight forward to implement in an existing entropy stable DGSEM code as only modifications local to an element are necessary. (C) 2020 Elsevier Inc. All rights reserved

    Free-Stream Preservation for Curved Geometrically Non-conforming Discontinuous Galerkin Spectral Elements

    Get PDF
    The under integration of the volume terms in the discontinuous Galerkin spectral element approximation introduces errors at non-conforming element faces that do not cancel and lead to free-stream preservation errors. We derive volume and face conditions on the geometry under which a constant state is preserved. From those, we catalog eight constraints on the geometry that preserve a constant state. Numerical examples are presented to illustrate the results

    The BR1 Scheme is Stable for the Compressible Navier-Stokes Equations

    Get PDF
    In this work we prove that the original (Bassi and Rebay in J Comput Phys 131:267-279, 1997) scheme (BR1) for the discretization of second order viscous terms within the discontinuous Galerkin collocation spectral element method (DGSEM) with Gauss Lobatto nodes is stable. More precisely, we prove in the first part that the BR1 scheme preserves energy stability of the skew-symmetric advection term DGSEM discretization for the linearized compressible Navier-Stokes equations (NSE). In the second part, we prove that the BR1 scheme preserves the entropy stability of the recently developed entropy stable compressible Euler DGSEM discretization of Carpenter et al. (SIAM J Sci Comput 36:B835-B867, 2014) for the non-linear compressible NSE, provided that the auxiliary gradient equations use the entropy variables. Both parts are presented for fully three-dimensional, unstructured curvilinear hexahedral grids. Although the focus of this work is on the BR1 scheme, we show that the proof naturally includes the Local DG scheme of Cockburn and Shu

    An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive MHD Equations. Part II: Subcell Finite Volume Shock Capturing

    Get PDF
    The second paper of this series presents two robust entropy stable shock-capturing methods for discontinuous Galerkin spectral element (DGSEM) discretizations of the compressible magneto-hydrodynamics (MHD) equations. Specifically, we use the resistive GLM-MHD equations, which include a divergence cleaning mechanism that is based on a generalized Lagrange multiplier (GLM). For the continuous entropy analysis to hold, and due to the divergence-free constraint on the magnetic field, the GLM-MHD system requires the use of non-conservative terms, which need special treatment. Hennemann et al. [DOI:10.1016/j.jcp.2020.109935] recently presented an entropy stable shock-capturing strategy for DGSEM discretizations of the Euler equations that blends the DGSEM scheme with a subcell first-order finite volume (FV) method. Our first contribution is the extension of the method of Hennemann et al. to systems with non-conservative terms, such as the GLM-MHD equations. In our approach, the advective and non-conservative terms of the equations are discretized with a hybrid FV/DGSEM scheme, whereas the visco-resistive terms are discretized only with the high-order DGSEM method. We prove that the extended method is entropy stable on three-dimensional unstructured curvilinear meshes. Our second contribution is the derivation and analysis of a second entropy stable shock-capturing method that provides enhanced resolution by using a subcell reconstruction procedure that is carefully built to ensure entropy stability. We provide a numerical verification of the properties of the hybrid FV/DGSEM schemes on curvilinear meshes and show their robustness and accuracy with common benchmark cases, such as the Orszag-Tang vortex and the GEM reconnection challenge. Finally, we simulate a space physics application: the interaction of Jupiter's magnetic field with the plasma torus generated by the moon Io
    corecore